MTH 419 9. Cyclic groups

Definition 9.1

A group G is cyclic if there is an element $a \in G$ such that

$$G = \{a^n \mid n \in \mathbb{Z}\}$$

or, in other notation, $G=\langle a \rangle$. In such case we say that a is a generator of G.

Theorem 9.2

If G is a finite group then G is cyclic if and only if there is an element $a \in G$ such that |a| = |G|.

Every subgroup of a cyclic group is cyclic.

If G is a finite cyclic group and $H \subseteq G$ is a subgroup then |H| divides |G|.

Theorem 9.5

If G is a finite cyclic group and d > 0 is an integer that divides |G| then there exists exactly one subgroup $H \subseteq G$ such that |H| = d.

Let $G=\langle a\rangle$ be a cyclic group of order n. An element a^k is a generator of G (i.e. $\langle a^k\rangle=G$) if and only if $\gcd(n,k)=1$.

Exercise. In the group \mathbb{Z}_{15} find all elements a such that a generates \mathbb{Z}_{15}

Let $G_1 = \langle a_1 \rangle$ and $G_2 = \langle a_2 \rangle$ be finite cyclic groups. The group $G_1 \times G_2$ is cyclic if and only if $\gcd(|G_1|, |G_2|) = 1$.

Theorem 9.8

For i = 1, ..., n let $G_i = \langle a_i \rangle$ be a cyclic group. The group $G_1 \times G_2 \times ... \times G_n$ is cyclic if and only if $gcd(|G_i|, |G_j|) = 1$ for all $i \neq j$.