Exponentiation

Properties of exponentiation

Definition 6.1

Let G be a group. An *order* of an element $g \in G$ is the smallest integer $n \ge 1$ such that $g^n = e$. We write: |g| = n.

If $g^n \neq e$ for all $n \geq 1$ then we say that g is an element of an *infinite order* and we write $|g| = \infty$.

Exercise. Recall that the multiplication table of the dihedral group D_4 is as follows:

0	1	R_{90}	R_{180}	R_{270}	Н	V	D	D'
1	1	R_{90}		R ₂₇₀		V	D	D'
$R_{90} \ R_{180}$	$R_{90} R_{180}$	$R_{180} R_{270}$	R ₂₇₀ I	R_{90}	D' V	D H	H D'	V D
R ₂₇₀ H	R ₂₇₀	I D	R_{90} V	R ₁₈₀ D'	D	D'	V	H
V	V	D'	v H	D D	R_{180}	R ₁₈₀ I	$R_{90} R_{270}$	$R_{270} R_{90}$
D D'	D D'	H V	D' D	V H	$R_{270} R_{90}$	$R_{90} \ R_{270}$	<i>I</i> <i>R</i> ₁₈₀	R ₁₈₀

Find the order of every element of D_4 .

Exercise. Find the order of every element in the group \mathbb{Z}_6 .

Theorem 6.2

If G is a finite group and $g \in G$ then $|g| < \infty$.

Theorem 6.3

If G is a group, $g \in G$ and $n \ge 1$ is an integer such that $g^n = e$, then |g| divides n.

Theorem 6.4

If G is a group, and $a,b\in G$ are elements such that $|a|,|b|<\infty$ and ab=ba then |ab| divides $|a|\cdot |b|$.

Theorem 6.5

If G is a group, and $a\in G$ is element such that $|a|=n<\infty$ then

$$|a^k| = \frac{n}{\gcd(n, k)}$$

Exercise. Compute the order of the element $6 \in \mathbb{Z}_{10}$.