
Regular polygons P_n with n sides:

Symmetries of P_4 :

Composition of symmetries:

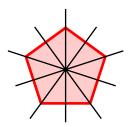
Composition table of symmetries of a square:

0	1	R_{90}	R_{180}	R_{270}	Н	V	D	D'
1	1	R_{90}		R_{270}	Н	V	D	D'
R_{90}	R_{90}	R_{180}	R_{270}	1	D'	D	Н	V
R_{180}	R_{180}	R_{270}	1	R_{90}	V	Н	D'	D
R_{270}	R_{270}	1	R_{90}	R_{180}	D	D'	V	Н
Н	Н	D	V	D'	1	R_{180}	R_{90}	R_{270}
V	V	D'	Н	D	R_{180}	1	R_{270}	R_{90}
D	D	Н	D'	V	R_{270}	R_{90}	1	R_{180}
D'	D'	V	D	Н	R_{90}	R_{270}	R_{180}	1

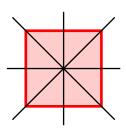
For $n \ge 3$ the dihedral group D_n is defined as follows:

- Elements of D_n : symmetries of the regular polygon with n sides.
- Group operation: Composition of symmetries (e.g. $V \circ D = R_{270}$).
- **The identity element:** The identity symmetry *I*.

Definition 5.1


The *order* of a group G is the number of elements of G. It is denoted by |G|. If G has infinitely many elements, we write $|G| = \infty$.

Theorem 5.2


For $n \ge 3$ we have $|D_n| = 2n$.

Note. The dihedral group D_n consists of the following elements:

- 1) n rotations by the angles of $k \cdot \frac{360}{n}$ degrees for $k = 0, \ldots, n-1$. For k = 0 this gives the rotation by 0 degrees, i.e. the identity symmetry.
- 2) n reflections with respect to different symmetry axes. If n is odd, there is one symmetry axis for each vertex of the polygon P_n :

If n is even, there are $\frac{n}{2}$ symmetry axes passing through pairs of opposite vertices and $\frac{n}{2}$ symmetry axes crossing opposite sides of P_n :

Definition 5.3

Let G be a group, and let $S \subseteq G$ be a subset of G. We say that the set S generates G if every element of G can be obtained as a product of some elements of S and inverses of elements of S.