MTH 419 3. Groups

Definition 3.1

A *group* is set G equipped with an operation that assigns to each pair of elements $a,b\in G$ an element $a\cdot b\in G$ in such way, that the following conditions are satisfied:

1) For any $a, b, c \in G$ we have

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

(associativity).

2) There exists an element $e \in G$ such that

$$e \cdot a = a \cdot e = a$$

for all $a \in G$. The element e is called the *identity element* or the *trivial element*.

3) For each element $a \in G$ there exists an element $b \in G$ such that

$$a \cdot b = b \cdot a = e$$

Such element b is called the *inverse* of a and it is denoted by a^{-1} .

Definition 3.2

A abelian group is a group G where the multiplication is commutative:

$$a \cdot b = b \cdot a$$

for all $a, b \in G$.

Notation

Multiplicative:

- $a \cdot b$, $a \times b$, a * b, $a \circ b$, $a \odot b$, ...
- Inverse element: a^{-1} .
- The identity element: e, 1, ...

Additive:

- \bullet a + b
- Inverse element: -a.
- The identity element: 0.

Note: The additive notation is only used for abelian groups.

Some examples of groups

Example: General linear groups $GL(n, \mathbb{R})$.

Example: Groups \mathbb{Z}_n

Example: Groups U(n)

Recall:

- If m, n are integers then gcd(m, n), is the greatest integer that divides both m and n.
- ullet For any m,n
 eq 0 there exists $a,b \in \mathbb{Z}$ such that

$$am + bn = \gcd(m, n)$$

Moreover, gcd(m, n) is the smallest positive integer that can be obtained for any choice of a and b.