Definition 22.1

Let R be an integral domain. An element $a \in R$ is *irreducible* if $a \neq 0$, a is not a unit and if a = bc for some $b, c \in R$ then either b or c is a unit.

Theorem 22.2

If R is an integral domain, $a \in R$ is irreducible and $u \in R$ is a unit then ua is irreducible.

Definition 22.3

Let R be an integral domain. Elements $a, b \in R$ are associates if a = ub for some unit $u \in R$. We write: $a \sim b$.

Definition 22.4

A unique factorization domain (UFD) is an integral domain R that satisfies the following conditions:

1) if $a \in R$ is a non-zero, non-unit element then

$$a = b_1 \cdot \ldots \cdot b_k$$

for some irreducible elements $b_1, \ldots, b_k \in R$

2) if $b_1, \ldots, b_k, c_1, \ldots, c_l$ are irreducible elements such that

$$b_1 \cdot \ldots \cdot b_k = c_1 \cdot \ldots \cdot c_l$$

then k = l and for some permutation $\sigma: \{1, ..., k\} \rightarrow \{1, ..., k\}$ we have $b_1 \sim c_{\sigma(1)}, ..., b_k \sim c_{\sigma(k)}$.

Theorem 22.5

The ring $\mathbb{Z}[\sqrt{-5}]$ is not a UFD.