If G is a finite abelian group then G is isomorphic to a direct product of cyclic groups whose orders are powers of primes:

$$G \cong \mathbb{Z}_{p_1^{r_1}} \times \mathbb{Z}_{p_2^{r_2}} \times \ldots \times \mathbb{Z}_{p_k^{r_k}}$$

for primes p_1, \ldots, p_k and integers $r_1, \ldots, r_k \ge 1$ such that $p_1^{r_1} \cdot p_2^{r_2} \cdot \ldots \cdot p_k^{r_k} = |G|$.

Definition 16.2

A short exact sequence of groups is a sequence group homorphisms

$$K \stackrel{i}{\longrightarrow} G \stackrel{q}{\longrightarrow} H$$

such that:

- *i* is 1-1
- q is onto
- $\operatorname{Im}(i) = \operatorname{Ker}(q)$

Consider a short exact sequence

$$K \xrightarrow{i} G \xrightarrow{q} H$$

where K, G, H are abelian groups. Assume that there exists a homomorphism $s\colon H\to G$ such that $g\circ s(h)=h$ for all $h\in H$. Then $G\cong K\times H$.

Corollary 16.4

Consider a short exact sequence

$$K \xrightarrow{i} G \xrightarrow{q} H$$

where K, G, H are abelian groups. Assume that there exists a homomorphism $s\colon H\to G$ such that $g\circ s$ is an isomorphism. Then $G\cong K\times H$.

Let G be a finite abelian group. Assume that $|G|=p^rm$ where p is a prime, $r\geq 1$ and m is a number which is not divisible by p. Then $G=K\times H$ where $|K|=p^r$ and |H|=m.

Lemma 16.6

Let G be a finite abelian group. Assume that there exists a prime p such that the order of each element $g \in G$ is a power of p. For $m \in \mathbb{Z}$ consider the function

$$f: G \to G$$

given by $f(g) = g^m$. If m is not divisible by p then f is a group isomorphism.

Corollary 16.7

If G is a finite abelian group and $|G| = p_1^{r_1} p_2^{r_2} \cdot \ldots \cdot p_k^{r_k}$ where p_1, p_2, \ldots, p_k are distinct primes then

$$G = G_1 \times G_2 \times \ldots \times G_k$$

where $|G_i| = p_i^{r_i}$.

If G is an abelian group such that $|G|=p^n$ for some prime p then G is a direct product of cyclic groups:

$$G \cong \mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}} \times \ldots \times \mathbb{Z}_{p^{k_m}}$$

for some k_1, k_2, \ldots, k_m .