MTH 419 15. Group actions

Definition 15.1

Let G be a group and X be a set. Given a function

$$\mu: G \times X \to X$$

denote $g \cdot x := \mu(g, x)$. We say that μ is a *group action* of G on the set X if the following conditions are satisfied:

- 1) $(gh) \cdot x = g \cdot (h \cdot x)$ for any $g, h \in G$ and $x \in X$.
- 2) $e \cdot x = x$ for any $x \in X$.

Definition 15.2

Let $\mu \colon G \times X \to X$ be a group action.

• The *orbit* of an element $x \in X$ is the subset of X given by

$$Orb(x) = \{gx \mid g \in G\}$$

ullet The stabilizer of an element $x \in X$ is the subset of G given by

$$\mathsf{Stab}(x) = \{ g \in G \mid gx = x \}$$

Theorem 15.3

Let $\mu \colon G \times X \to X$ be a group action and let $x, y \in X$. Then:

- 1) $x \in Orb(x)$.
- 2) Either Orb(x) = Orb(y) or $Orb(x) \cap Orb(y) = \emptyset$.
- 3) Orb(x) = Orb(y) if and only if y = gx for some $g \in G$.

Corollary 15.4

If $\mu \colon G \times X \to X$ is a group action and X is a finite set, then

$$|X| = |\operatorname{Orb}(x_1)| + |\operatorname{Orb}(x_2)| + \cdots + |\operatorname{Orb}(x_m)|$$

where $Orb(x_1)$, $Orb(x_2)$, . . . , $Orb(x_m)$ are all different orbits of the action.

Theorem 15.5

Let $\mu \colon G \times X \to X$ be a group action and let $x \in X$.

- 1) Stab(x) is a subgroup of G.
- 2) If y = gx then $Stab(y) = g Stab(x)g^{-1}$.
- **3)** If G is a finite group then $|G| = |\operatorname{Orb}(x)| \cdot |\operatorname{Stab}(x)|$

Theorem 15.6 (Cauchy Theorem)

If G is a finite group and p is a prime that divides |G| then there exists an element of order p in G.

Definition 15.7

If p is a prime number then a p-group is a finite group of order p^r for some $r \ge 0$.

Corollary 15.8

A finite group G is a p-group if and only if the order of every element of G is a power of p

Theorem 15.9

If G is a p-group then there exists an element $a \in G$ such that $a \neq e$ and aq = qa for all $q \in G$.