Recall:

- A normal subgroup of a group G is a subgroup $H \subseteq G$ such that for every $a \in G$ and $h \in H$ we have $aha^{-1} \in H$.
- We write $H \triangleleft G$ to denote that H is a normal subgroup of G.
- If $f: G \to K$ is a group homomorphism, then $Ker(f) \triangleleft G$.

Theorem 14.1

Let G be a group and let $H\subseteq G$ be a subgroup. Then the following conditions are equivalent:

- **1)** *H* ⊲ *G*
- 2) For any $a \in G$ we have $aHa^{-1} = H$ where $aHa^{-1} = \{aha^{-1} \mid h \in H\}$.
- 3) For any $a \in G$ we have aH = Ha.

Theorem 14.2

Let G be a group and $H \triangleleft G$. Let $a_1, a_2, b_1, b_2 \in G$ be elements such that $a_1H = a_2H$ and $b_1H = b_2H$. Then $(a_1b_1)H = (a_2b_2)H$.

Definition 14.3

Let G be a group and let $H \triangleleft G$. The *quotient group* G/H is defined as follows:

• Elements of G/H are left cosets aH of H in G.

• Group operation: $aH \cdot bH = (ab)H$.

• The identity element: the coset eH = H.

• The inverse of aH: $a^{-1}H$.

Example. Take the dihedral group D_4 :

0	1	R_{90}	R_{180}	R_{270}	Н	V	D	D'
1	1	R_{90}		R ₂₇₀		V	D	D'
$R_{90} \ R_{180}$	$R_{90} \ R_{180}$	$R_{180} R_{270}$	R ₂₇₀ I	I R ₉₀	D' V	D H	H D'	V D
R_{270}	R_{270}	1	R_{90}	R_{180}	D	D'	V	Н
Н	Н	D	V	D'	1	R_{180}	R_{90}	R_{270}
V	V	D'	Н	D	R_{180}	1	R_{270}	R_{90}
D	D	Н	D'	V	R_{270}	R_{90}	1	R_{180}
D'	D'	V	D	Н	R_{90}	R_{270}	R_{180}	1

Theorem 14.4 (First Isomorphism Theorem)

Let $f \colon G \to H$ be a homomorphisms of groups which is onto. Then

$$H \stackrel{\sim}{=} G/\mathrm{Ker}(f)$$

Corollary 14.5

For any normal subgroup K of a group G there exists a homomorphism $f \colon G \to H$ such that $\operatorname{Ker}(f) = K$.