Definition 13.1

Let G be a group and $H\subseteq G$ a subgroup. For $a\in G$ the left coset of H in G containing a is the subset of G given by

$$aH = \{ah \mid h \in H\}$$

Similarly, the right coset of H in G containing a is the subset

$$Ha = \{ha \mid h \in H\}$$

Example. Consider the group D_4 :

0	1	R_{90}	R_{180}	R_{270}	Н	V	D	D'
1	1	R_{90}	R_{180}	R_{270}	Н	V	D	D'
R_{90}	R_{90}	R_{180}	R_{270}	1	D'	D	Н	V
R_{180}	R_{180}	R_{270}	1	R_{90}	V	Н	D'	D
R_{270}	R_{270}	1	R_{90}	R_{180}	D	D'	V	Н
Н	Н	D	V	D'	1	R_{180}	R_{90}	R_{270}
V	V	D'	Н	D	R_{180}	1	R_{270}	R_{90}
D	D	Н	D'	V	R_{270}	R_{90}	1	R_{180}
D'	D'	V	D	Н	R_{90}	R_{270}	R_{180}	1

Theorem 13.2

Let G be a group, $H \subseteq G$ a subgroup, and let $a, b \in G$. Then:

- 1) $a \in aH$.
- 2) either aH = bH or $aH \cap bH = \emptyset$.
- 3) aH = bH if and only if $a^{-1}b \in H$.
- 4) |aH| = |H|, where |aH| denotes the number of elements in aH.

Analogous properties hold for right cosets.

Definition 13.3

For a group G and a subgroup $H \subseteq G$ by G/H we denote the set of left cosets of H in G and by $H \setminus G$ we denote the set of right cosets.

Theorem 13.4

If G is a group and $H \subseteq G$ is a subgroup, then $|G/H| = |H \setminus G|$.

Definition 13.5

If G is a group and $H \subseteq G$ is a subgroup then the *index* of H, denoted [G : H], is the number of left cosets of H in G (or, equivalently, the number of right cosets):

$$[G:H] = |G/H| = |H \backslash G|$$

Theorem 13.6 (Lagrange Theorem)

If G is a finite group and $H \subseteq G$ is a subgroup then

$$|G| = [G:H] \cdot |H|$$

Corollary 13.7

If G is a finite group and $H \subseteq G$ is a subgroup then the order of H divides the order of G.

Corollary 13.8

If G is a finite group and $a \in G$ then the order |a| of a divides the order of G.