Definition 11.1

Let G, H be groups. A group homomorphism is a function

$$f: G \to H$$

which for any $a, b \in G$ satisfies $f(a \cdot b) = f(a) \cdot f(b)$

Theorem 11.2

Let $f: G \to H$ be a groups homomorphism. Then:

- $f(e_G) = e_H$ where e_G and e_H are the identity elements in G and H, respectively.
- $f(a^{-1}) = f(a)^{-1}$ for any $a \in G$.

Examples.

Theorem 11.3

Let $f: G \to H$ be a homomorphism of groups and let $a \in G$. If $|a| < \infty$ then |f(a)| divides |a|.

Definition 11.4

Let $f\colon G\to H$ be a group homomorphism. The $kernel\ of\ f$ is the subset of G defined by

$$Ker(f) = \{g \in G \mid f(g) = e\}$$

The *image* of f is the subset of H given by

$$Im(f) = \{ f(g) \mid g \in G \}$$

Theorem 11.5

If $f: G \to H$ is a homomorphism of groups then Ker(f) is a subgroup of G and Im(f) is a subgroup of H.

Examples.

Theorem 11.6

If $f: G \to H$ is a homomorphism then f(a) = f(b) if and only if b = ak for some $k \in \text{Ker}(f)$.

Corollary 11.7

A homomorphism of groups $f: G \to H$ is 1-1 if and only if $Ker(f) = \{e\}$.

Corollary 11.8

If $f: G \to H$ is a homomorphism of groups, and f(a) = b for some $a \in G$, $b \in H$ then

$$f^{-1}(b) = \{ak \mid k \in Ker(f) \}$$

Theorem 11.9

Let $f: G \to H$ is a homomorphism of groups then $g \in \operatorname{Ker}(f)$ if and only if for each $a \in G$ we have $aga^{-1} \in \operatorname{Ker}(f)$.

Definition 11.10

Let G be a group. We say that a subgroup $H \subseteq G$ is a *normal subgroup* of G if for any $h \in H$ and $g \in G$ we have $ghg^{-1} \in H$.

We write $H \triangleleft G$ to denote that H is a normal subgroup of G.

Corollary 11.11

If $f: G \to H$ is a homomorphism of groups then Ker(f) is a normal subgroup of G.

Example. Consider the dihedral group D_4 :

0	1	R_{90}	R_{180}	R_{270}	Н	V	D	D'
1	1	R_{90}	R_{180}	R_{270}	Н	V	D	D'
R_{90}	R_{90}	R_{180}^{30}	R_{270}	1	D'	D	Н	V
R_{180}	R_{180}	R_{270}	1	R_{90}	V	Н	D'	D
R_{270}	R_{270}	1	R_{90}	R_{180}	D	D'	V	Н
Н	Н	D	V	D'	1	R_{180}	R_{90}	R_{270}
V	V	D'	Н	D	R_{180}	1	R_{270}	R_{90}
D	D	Н	D'	V	R_{270}	R_{90}	1	R_{180}
D'	D'	V	D	Н	R_{90}	R_{270}	R_{180}	1