MTH 419 9. Cyclic groups

Definition 9.1

A group G is cyclic if there is an element $a \in G$ such that

$$G = \{a^n \mid n \in \mathbb{Z}\}$$

or, in other notation, $G = \langle a \rangle$. In such case we say that a is a *generator* of G.

Example. The following groups are cyclic:

- $\bullet \mathbb{Z}$
- \mathbb{Z}_n for any $n \geq 1$
- If G is any group and $a \in G$ then $\langle a \rangle$ is a cyclic subgroup of G.

Theorem 9.2

If G is a finite group then G is cyclic if and only if there is an element $a \in G$ such that |a| = |G|.

Proof. If G is cyclic then $G=\langle a\rangle$ for some $a\in G$ and then $|G|=|\langle a\rangle|=|a|$. Conversely, if there is $a\in G$ such that |a|=|G|, then $\langle a\rangle\subseteq G$ and $|\langle a\rangle|=|G|$, which gives $\langle a\rangle=G$.

Theorem 9.3

Every subgroup of a cyclic group is cyclic.

Proof. Let $G = \langle a \rangle$, and let H be a subgroup of G. If H contains only the trivial element $e = a^0$ then H is cyclic since $H = \langle e \rangle$. Otherwise, there are some elements $a^n \in H$ with n > 0. Let m > 0 be the smallest integer such that $a^m \in H$. We will show that $H = \langle a^m \rangle$.

Since $a^m \in H$, thus $(a^m)^k \in H$ for all $k \in \mathbb{Z}$, so $\langle a^m \rangle \subseteq H$.

Conversely, let $a^n \in H$ for some n. Then n = qm + r for some $0 \le r < m$. This gives

$$a^n = a^{qm+r} = a^{qm} \cdot a^r$$

We have seen already that $a^{-qm} \in H$, so $a^{-qm} \cdot a^n \in H$. However, we have

$$a^{-qm} \cdot a^n = a^{-qm} \cdot a^{qm} \cdot a^r = a^r$$

which means that $a^r \in H$. Since r < m, we get that r = 0. Therefore $a^n = a^{qm} \in \langle a^m \rangle$. This implies that $H \subseteq \langle a^m \rangle$.

Theorem 9.4

If G is a finite cyclic group and $H \subseteq G$ is a subgroup then |H| divides |G|.

Proof. Let $G = \langle a \rangle$ and let |G| = |a| = n. By Theorem 9.3 we have $H = \langle a^m \rangle$ for some m. Then $|H| = |a^m|$ and by Theorem 6.5 $|a^m| = \frac{n}{\gcd(n,m)}$. Therefore |H| divides |G|.

Theorem 9.5

If G is a finite cyclic group and d > 0 is an integer that divides |G| then there exists exactly one subgroup $H \subseteq G$ such that |H| = d.

Proof. Let $G = \langle a \rangle$ and let |G| = |a| = n. Since d divides n we have n = dm for some m > 0. We will first show that a subgroup H of order d exists. Take $H = \langle a^m \rangle$. Then

$$|H| = |a^m| = \frac{n}{\gcd(n, m)} = \frac{n}{m} = d$$

Next, $H' \subseteq G$ be some other subgroup of G such that |H'| = d. We have $H' = \langle a^k \rangle$ for some $0 < k \le n$ such that $\gcd(n,k) = m$. Then m = pk + qn for some $p,q \in \mathbb{Z}$. This gives

$$a^m = a^{pk} \cdot a^{qn} = (a^k)^p \in H'$$

and so $H = \langle a^m \rangle \subseteq H'$. Since both groups H and H' consist of d elements, it follows that H = H'.

Theorem 9.6

Let $G = \langle a \rangle$ be a cyclic group of order n. An element a^k is a generator of G (i.e. $\langle a^k \rangle = G$) if and only if $\gcd(n, k) = 1$.

Proof. The group $\langle a^k \rangle$ consists of $\frac{n}{\gcd(n,k)}$ elements. We have $\langle a^k \rangle = G$ if and only if $\frac{n}{\gcd(n,k)} = n$ i.e. $\gcd(k,n) = 1$.

Exercise. In the group \mathbb{Z}_{15} find all elements a such that a generates \mathbb{Z}_{15}

Theorem 9.7

Let $G_1 = \langle a_1 \rangle$ and $G_2 = \langle a_2 \rangle$ be finite cyclic groups. The group $G_1 \times G_2$ is cyclic if and only if $gcd(|G_1|, |G_2|) = 1$.

Proof. Assume that $gcd(|G_1|, |G_2|) = 1$. Consider the element $(a_1, a_2) \in G_1 \times G_2$. By Theorem 8.3 we have:

$$|(a_1, a_2)| = \operatorname{lcm}(|a_1|, |a_2|) = \operatorname{lcm}(|G_1|, |G_2|) = \frac{|G_1| \cdot |G_2|}{\gcd(|G_1|, |G_2|)} = |G_1| \cdot |G_2| = |G_1 \times G_2|$$

This shows that $G_1 \times G_2 = \langle (a_1, a_2) \rangle$.

Conversely, assume that $|G_1|=n_1$, $|G_2|=n_2$ and that $\gcd(n_1,n_2)=d>1$. Let $(b_1,b_2)\in G_1\times G_2$ be an arbitrary element. Then

$$(b_1, b_2)^{n_1 n_2/d} = (b_1^{n_1 \cdot (n_2/d)}, b_2^{n_2 \cdot (n_1/d)}) = (e, e)$$

This means that $|(b_1, b_2)|$ divides $n_1 n_2 / d$, and so $|(b_1, b_2)| < n_1 n_2 = |G_1 \times G_2|$.

Example. The group $\mathbb{Z}_2 \times \mathbb{Z}_3$ is a cyclic group generated by the element (1, 1). On the other hand the group $\mathbb{Z}_2 \times \mathbb{Z}_2$ is not cyclic.

Using induction, Theorem 9.7 can be generalized as follows:

Theorem 9.8

For $i=1,\ldots,n$ let $G_i=\langle a_i\rangle$ be a cyclic group. The group $G_1\times G_2\times\ldots\times G_n$ is cyclic if and only if $\gcd(|G_i|,|G_j|)=1$ for all $i\neq j$.