Definition 8.1

The *direct product* of groups G_1, \ldots, G_n is a group $G_1 \times G_2 \times \ldots \times G_n$ defined as follows:

- Elements: n-tuples (g_1, g_2, \ldots, g_n) where $g_i \in G_i$.
- Group operation:

$$(g_1, g_2, \ldots, g_n) \cdot (h_1, h_2, \ldots, h_n) = (g_1h_1, g_2h_2, \ldots, g_nh_n)$$

- The identity element: (e_1, e_2, \dots, e_n) where e_i is the identity element in G_i . Inverses: $(g_1, g_2, \dots, g_n)^{-1} = (g_1^{-1}, g_2^{-1}, \dots, g_n^{-1})$.

Note. We have:

$$|G_1 \times G_2 \times \ldots \times G_n| = |G_1| \cdot |G_2| \cdot \ldots \cdot |G_n|$$

Example. The groups $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ has 6 elements:

$$(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)$$

The multiplication table in $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ is as follows:

0	(0, 0)	(0, 1)	(0, 2)	(1, 0)	(1, 1)	(1, 2)
(0,0)	(0,0) (0,1) (0,2) (1,0) (1,1) (1,2)	(0, 1)	(0, 1)	(1, 0)	(1, 1)	(1, 2)
(0, 1)	(0, 1)	(0, 2)	(0, 0)	(1, 1)	(1, 2)	(1, 0)
(0, 2)	(0, 2)	(0, 0)	(0, 1)	(1, 2)	(1, 0)	(1, 1)
(1, 0)	(1, 0)	(1, 1)	(1, 2)	(0, 0)	(0, 1)	(0, 2)
(1, 1)	(1, 1)	(1, 2)	(1, 0)	(0, 1)	(0, 2)	(0, 0)
(1, 2)	(1, 2)	(1, 0)	(1, 1)	(0, 2)	(0, 0)	(0, 1)

Theorem 8.2

The group $G_1 \times \ldots \times G_n$ is abelian of and only if each of the groups G_i is abelian.

Proof. If G_1, \ldots, G_n are abelian groups, then

$$(g_1, \ldots, g_n) \cdot (h_1, \ldots, h_n) = (g_1 h_1, \ldots, g_n h_n)$$

= $(h_1 g_1, \ldots, h_n g_n) = (h_1, \ldots, h_n) \cdot (g_1, \ldots, g_n)$

Conversely, if $G_1 \times \ldots \times G_n$ is abelian then for any $g_i, h_i \in G_i$ we have

$$(g_1h_1, \ldots, g_nh_n) = (g_1, \ldots, g_n) \cdot (h_1, \ldots, h_n)$$

= $(h_1, \ldots, h_n) \cdot (g_1, \ldots, g_n) = (h_1g_1, \ldots, h_ng_n)$

which gives $g_i h_i = h_i g_i$ for i = 1, ..., n.

Recall:

• The *least common multiple* of integers $n_1, n_2, \ldots, n_k \ge 1$ is the smallest positive integer, denoted by $lcm(n_1, \ldots, n_k)$, which is divisible by each of these numbers.

П

• If m > 0 is an integer divisible by n_1, \ldots, n_k then m is divisible by $lcm(n_1, \ldots, n_k)$.

Theorem 8.3

For $i=1,\ldots,n$ let $a_i\in G_i$, and let $(a_1,\ldots,a_n)\in G_1\times\ldots\times G_n$. Then

$$|(a_1,\ldots,a_n)|=\operatorname{lcm}(|a_1|,\ldots,|a_n|)$$

Example. Consider the element $(1,1) \in \mathbb{Z}_2 \times \mathbb{Z}_3$ since $1 \in \mathbb{Z}_2$ is an element of order 2, and $1 \in \mathbb{Z}_3$ is an element of order 3, we obtain that |(1,1)| = lcm(2,3) = 6.

Proof of Theorem 8.3. Let $|(a_1, \ldots, a_n)| = p$ and $lcm(|a_1|, \ldots, |a_n|) = q$. We have

$$(a_1, \ldots, a_n)^q = (a_1^q, \ldots, a_n^q) = (e_1, \ldots, e_n)$$

The last equality comes from Theorem 6.3, since $|a_i|$ divides q for each i. Using Theorem 6.3 again we obtain that p divides q. On the other hand,

$$(e_1,\ldots,e_n)=(a_1,\ldots,a_n)^p=(a_1^p,\ldots,a_n^p)$$

which gives $e_i = a_i^p$ for each i. Using Theorem 6.3 one more time, we get that $|a_i|$ divides p, and so $q = \text{lcm}(|a_1|, \dots, |a_n|)$ divides p. As a consequence p = q.