Exponentiation

Let G be a group and let $g \in G$. For an integer n > 0 we denote:

• $g^n = \underbrace{g \cdot g \cdot \ldots \cdot g}_{n \text{ times}}$

- (additive notation: $ng = \underbrace{g + g + \ldots + g}_{n \text{ times}}$)
- $g^{-n} = \underbrace{g^{-1} \cdot g^{-1} \cdot \ldots \cdot g^{-1}}_{n \text{ times}}$
- (additive notation: $(-n)g = \underbrace{-g g \ldots g}_{n \text{ times}}$)

• $g^0 = e$

(additive notation: 0q = 0)

Properties of exponentiation

 $\bullet \ q^{m+n} = q^m \cdot q^n$

(additive notation: (m + n)g = (mg) + (ng))

• $g^{mn} = (g^m)^n$

(additive notation: (mn)g = m(ng))

Definition 6.1

Let G be a group. An *order* of an element $g \in G$ is the smallest integer $n \ge 1$ such that $g^n = e$. We write: |g| = n.

If $g^n \neq e$ for all $n \geq 1$ then we say that g is an element of an *infinite order* and we write $|g| = \infty$.

Note. If $g^n = e$ then $g^{-1} = g^{n-1}$. In particular, if $g^2 = e$ then $g = g^{-1}$.

Exercise. Recall that the multiplication table of the dihedral group D_4 is as follows:

0	1	R_{90}	R_{180}	R_{270}	Н	V	D	D'
1	1	R_{90}		R ₂₇₀	Н	V	D	D'
R_{90}	R_{90}	R_{180}	R_{270}	1	D'	D	Н	V
R_{180}	R_{180}	R_{270}	1	R_{90}	V	Н	D'	D
R_{270}	R_{270}	1	R_{90}	R_{180}	D	D'	V	Н
Н	Н	D	V	D'	1	R_{180}	R_{90}	R_{270}
V	V	D'	Н	D	R_{180}	1	R_{270}	R_{90}
D	D	Н	D'	V	R_{270}	R_{90}	1	R_{180}
D'	D'	V	D	Н	R_{90}	R_{270}	R_{180}	1

Find the order of every element of D_4 .

Exercise. Find the order of every element in the group \mathbb{Z}_6 .

Theorem 6.2

If G is a finite group and $g \in G$ then $|g| < \infty$.

Proof. Consider the sequence

$$q^1, q^2, q^3, \cdots \subseteq G$$

Since G consists of finitely many elements, we must have $g^m = g^n$ for some n > m. This gives

$$g^{-m}g^m = g^{-m}g^n$$
$$e = g^{n-m}$$

Thus $|g| \le n - m < \infty$.

Theorem 6.3

If G is a group, $g \in G$ and $n \ge 1$ is an integer such that $g^n = e$, then |g| divides n.

Proof. We have

$$n = |g| \cdot q + r$$

for some integers $q \ge 0$ and $0 \le r < |g|$. We want to show that r = 0. Assume that it is not true. Then we have

$$e = g^n = g^{|g| \cdot q + r} = g^{|g| \cdot q} \cdot g^r = \left(g^{|g|}\right)^q \cdot g^r = e \cdot g^r = g^r$$

We obtain that $g^r = e$. This is however impossible, since r < |g|.

Theorem 6.4

If G is a group, and $a,b \in G$ are elements such that $|a|,|b| < \infty$ and ab = ba then |ab| divides $|a| \cdot |b|$.

Proof. Let |a| = m and |b| = n. We have

$$(ab)^{mn} = a^{mn}b^{mn} = (a^m)^n \cdot (b^n)^m = e^n \cdot e^m = e$$

By Theorem 6.3 we get that |ab| divides $mn = |a| \cdot |b|$.

Example. In the dihedral group D_4 take $a = R_{90}$, $b = R_{180}$. Then $a \cdot b = R_{90} \cdot R_{180} = R_{270}$ We have $|R_{90}| = 4$, $|R_{180}| = 2$, so $|R_{90}| \cdot |R_{180}| = 8$ which is divisible by $|R_{270}| = 4$.

Example. Theorem 6.4 is not true in general if $ab \neq ba$. Take for example a, b to be two different reflections in the dihedral group D_3 . Then |a| = |b| = 2, so $|a| \cdot |b| = 4$, but |ab| = 3.

As another example, in the group $GL(2,\mathbb{R})$ take matrices

$$A = \begin{bmatrix} 0 & 2 \\ \frac{1}{2} & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Then |A| = 2 and |B| = 2 but $|AB| = \infty$.

Theorem 6.5

If G is a group, and $a \in G$ is element such that $|a| = n < \infty$ then

$$|a^k| = \frac{n}{\gcd(n, k)}$$

Exercise. Compute the order of the element $6 \in \mathbb{Z}_{10}$.

Proof of Theorem 6.5. Let $|a^k| = r$. Then r is the smallest positive integer such that $(a^k)^r = a^{kr} = e$. Using Theorem 6.3 we obtain that r is the smallest positive integer such that n|kr. This means that kr is the least common multiple of n and k: kr = lcm(n, k). This gives:

$$kr = lcm(n, k) = \frac{nk}{\gcd(n, k)}$$

and so
$$r = \frac{n}{\gcd(n, k)}$$
.