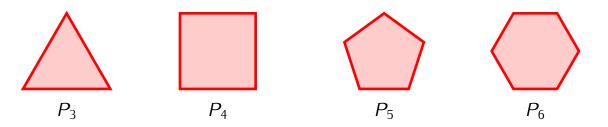
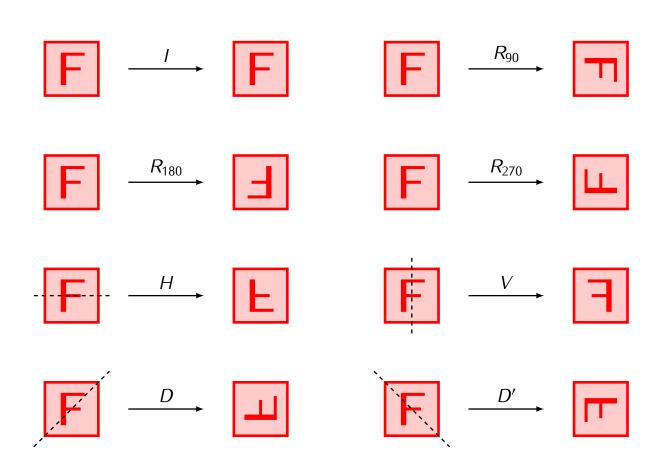
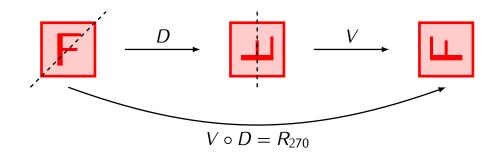
Regular polygons P_n with n sides:

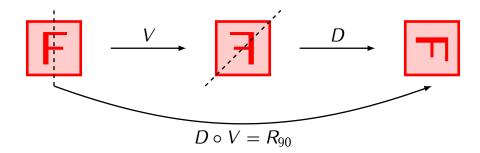


Symmetries of P_4 :



Composition of symmetries:





Composition table of symmetries of a square:

0	1	R_{90}	R_{180}	R_{270}	Н	V	D	D'
1	1	R_{90}		R_{270}	Н	V	D	D'
R_{90}	R_{90}	R_{180}	R_{270}	1	D'	D	Н	V
R_{180}	R_{180}	R_{270}	1	R_{90}	V	Н	D'	D
R_{270}	R_{270}	1	R_{90}	R_{180}	D	D'	V	Н
Н	Н	D	V	D'	1	R_{180}	R_{90}	R_{270}
V	V	D'	Н	D	R_{180}	1	R_{270}	R_{90}
D	D	Н	D'	V	R_{270}	R_{90}	1	R_{180}
D'	D'	V	D	Н	R_{90}	R_{270}	R_{180}	1

For $n \ge 3$ the dihedral group D_n is defined as follows:

- Elements of D_n : symmetries of the regular polygon with n sides.
- Group operation: Composition of symmetries (e.g. $V \circ D = R_{270}$).
- **The identity element:** The identity symmetry *I*.

Definition 5.1

The *order* of a group G is the number of elements of G. It is denoted by |G|. If G has infinitely many elements, we write $|G| = \infty$.

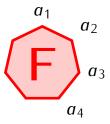
Examples.

- $|D_4| = 8$
- $|\mathbb{Z}_n| = n$
- $|\mathbb{Z}| = \infty$
- $|\mathbb{Q}| = \infty$
- $|\mathbb{R}| = \infty$
- $|GL(n, \mathbb{R})| = \infty$

Theorem 5.2

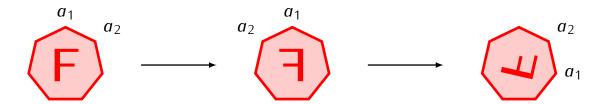
For $n \ge 3$ we have $|D_n| = 2n$.

Proof. Let P_n be a regular polygon with vertices a_1, a_2, \ldots, a_n :



Each symmetry of P_n is uniquely determined once we know where is sends vertices a_1 and a_2 . For every $1 \le i \le n$ there is a symmetry that sends a_1 to a_i and a_2 to a_{i+1} given by a rotation:

Also, for every i we there is a symmetry that sends a_1 to a_i and a_2 to a_{i-1} . This is given by a composition of a reflection with respect to a line that passes through a_1 and a rotation:

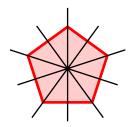


Altogether, this gives 2n possible symmetries of P_n .

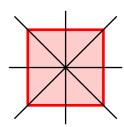
Note. The dihedral group D_n consists of the following elements:

1) n rotations by the angles of $k \cdot \frac{360}{n}$ degrees for $k = 0, \ldots, n-1$. For k = 0 this gives the rotation by 0 degrees, i.e. the identity symmetry.

2) n reflections with respect to different symmetry axes. If n is odd, there is one symmetry axis for each vertex of the polygon P_n :



If n is even, there are $\frac{n}{2}$ symmetry axes passing through pairs of opposite vertices and $\frac{n}{2}$ symmetry axes crossing opposite sides of P_n :



Definition 5.3

Let G be a group, and let $S \subseteq G$ be a subset of G. We say that the set S generates G if every element of G can be obtained as a product of some elements of S and inverses of elements of S.

Examples.

- Let P_n be a regular polygon with vertices a_1, \ldots, a_n . In the proof of Theorem 5.2 we have seen that every symmetry of P_n can be obtained by composing some rotation of P_n and a reflection D with respect to the line that passes through the vertex a_1 . Moreover, every rotation of P_n can be obtained by composing some number of times the rotation R by the angle of $\frac{360}{n}$ degrees. Thus, every symmetry of P_n can be obtained as some product of R and R. This means that the set R and R generates the dihedral group R.
- The group of integers \mathbb{Z} is generated by a set $\{1\}$ consisting of single element $1 \in \mathbb{Z}$, since every element of \mathbb{Z} can be obtained by adding some number of times 1 and -1.
- The group of integers \mathbb{Z}_n is generated by a set $\{1\}$ consisting of single element $1 \in \mathbb{Z}$.
- The set $\{2\}$ generates \mathbb{Z}_3 , but it does not generate \mathbb{Z}_4 .