MTH 419 3. Groups

Definition 3.1

A *group* is set G equipped with an operation that assigns to each pair of elements $a, b \in G$ an element $a \cdot b \in G$ in such way, that the following conditions are satisfied:

1) For any $a, b, c \in G$ we have

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

(associativity).

2) There exists an element $e \in G$ such that

$$e \cdot a = a \cdot e = a$$

for all $a \in G$. The element e is called the *identity element* or the *trivial element*.

3) For each element $a \in G$ there exists an element $b \in G$ such that

$$a \cdot b = b \cdot a = e$$

Such element b is called the *inverse* of a and it is denoted by a^{-1} .

Note. The first condition in the definition of a group implies that if we want to multiply several elements, then it does not matter how we place parentheses. E.g.:

$$((ab)c)d = (ab)(cd) = a(b(cd)) = a((bc)d) = (a(bc))d$$

Definition 3.2

A abelian group is a group G where the multiplication is commutative:

$$a \cdot b = b \cdot a$$

for all $a, b \in G$.

Notation

Multiplicative:

- $a \cdot b$, $a \times b$, a * b, $a \circ b$, $a \odot b$, ...
- Inverse element: a^{-1} .
- The identity element: e, 1, ...

Additive:

- \bullet a+b
- Inverse element: -a.
- The identity element: 0.

Note: The additive notation is only used for abelian groups.

Some examples of groups

- \bullet \mathbb{Z} the group of integers (with addition)
- ullet ${\mathbb Q}$ the group of rational numbers (with addition)
- ullet R the group of real numbers (with addition)
- \bullet $\mathbb C$ the group of complex numbers (with addition)
- ullet \mathbb{Q}^* the group of non-zero rational numbers (with multiplication)
- \bullet \mathbb{R}^* the group of non-zero real numbers (with multiplication)
- ullet C* the group of non-zero complex numbers (with multiplication)
- ullet Q⁺ the group of positive rational numbers (with multiplication)
- \bullet \mathbb{R}^+ the group of positive real numbers (with multiplication)
- The trivial group $\{e\}$.

Example: General linear groups $GL(n, \mathbb{R})$.

• Elements of $GL(n, \mathbb{R})$: invertible $n \times n$ matrices with real entries.

- Group operation: matrix multiplication.
- The identity element: the identity matrix I_n .

Example: Groups \mathbb{Z}_n

Notation: Let n > 0 be an integer. For any integer m we have

$$m = qn + r$$

where $q, r \in \mathbb{Z}$ and $0 \le r < n$. Then we write

$$m \mod n = r$$

For an integer $n \geq 2$ the group \mathbb{Z}_n is defined as follows:

- Elements of \mathbb{Z}_n : numbers $0, 1, \ldots, n-1$
- Group operation \oplus : For $k, l \in \mathbb{Z}_n$ we set

$$k \oplus l := (k + l) \mod n$$

- The identity element: 0.
- Inverses: The inverse of an element $k \in \mathbb{Z}_n$ is the element n k.

Example: Groups U(n)

Recall:

- If m, n are integers then gcd(m, n), is the greatest integer that divides both m and n.
- ullet For any $m,n \neq 0$ there exists $a,b \in \mathbb{Z}$ such that

$$am + bn = \gcd(m, n)$$

Moreover, gcd(m, n) is the smallest positive integer that can be obtained for any choice of a and b.

For an integer $n \ge 2$ the group U(n) is defined as follows:

- Elements of U(n): integers $1 \le k < n$ such that gcd(k, n) = 1
- Group operation \odot : For $k, l \in U(n)$ we set

$$k \odot l := (k \cdot l) \mod n$$

- The identity element: 1.
- **Inverses:** If k is en element of U(n), then we can find $p, q \in \mathbb{Z}$ such that $pk + qn = \gcd(k, n) = 1$. Let $\overline{p} = p \mod n$. Notice that we have $\gcd(p, n) = 1$, so also $\gcd(\overline{p}, n) = 1$. Also,

$$(\overline{p} \cdot k) \mod n = (pk) \mod n = (pk + qn) \mod n = 1$$

This means that $\overline{p} = k^{-1}$ in the group U(n).