Recall: A principal ideal domain (PID) is a ring R which is an integral domain, such that every ideal $I \triangleleft R$ is principal, i.e. $I = \langle a \rangle$ for some $a \in R$.

Theorem 24.1

If R is a PID then it is a UFD.

Lemma 24.2

If R is a PID and I_1, I_2, \ldots are ideals of R such that

$$I_1 \subset I_2 \subset \dots$$

then there exists $n \ge 1$ such that $I_n = I_{n+1} = \dots$

Proof. Take $J = \bigcup_{i=1}^{\infty} I_i$. One can check that J is an ideal of R. Since R is a PID we have $J = \langle a \rangle$ for some $a \in J$. Take $n \geq 1$ such that $a \in I_n$. Then we get

$$J\subseteq I_n\subseteq I_{n+1}\subseteq \ldots\subseteq J$$

It follows that $I_n = I_{n+1} = \ldots = J$.

Lemma 24.3

Let R be a PID. An element $a \in R$ is irreducible if and only if $\langle a \rangle$ is a maximal ideal of R.

Proof. Exercise.

Proof of Theorem 24.1. Let R be a PID. By Theorem 23.5 it suffices to show that

- 1) Every non-zero, non-unit element of R is a product of irreducible elements.
- 2) Every irreducible element in R is a prime element.

1) We argue by contradiction. Assume that $a_0 \in R$ is a non-zero, non-unit element that is not a product of irreducibles. This implies that $a_0 = a_1b_1$ for some non-zero, non-unit elements $a_1, b_1 \in R$.

If both a_1 and b_1 were products of irreducibles, then a_0 would be also a product of irreducibles, contradicting our assumption. We can then assume that a_1 is not a product of irreducibles, and so in particular we have $a_1 = a_2b_2$ for some non-zero, non-unit elements $a_2, b_2 \in R$.

By induction we obtain that for i = 1, 2, ... there exists non-zero, non-unit elements $a_i, b_i \in R$ such that $a_i = a_{i+1}b_{i+1}$ for all $i \ge 0$.

Consider the chain of ideals

$$\langle a_0 \rangle \subseteq \langle a_1 \rangle \subseteq \dots$$

By Lemma 24.3 we obtain that $\langle a_n \rangle = \langle a_{n+1} \rangle$ for some $n \geq 0$. This means that $a_n = a_{n+1}u$ for some unit $u \in R$ (check!). As a consequence $a_{n+1}b_{n+1} = a_n = a_{n+1}u$ and so $b_{n+1} = u$. This is a contradiction, since b_{n+1} is not a unit.

2) Let $a \in R$ be an irreducible element and let $a \mid (bc)$. We need to show that either $a \mid b$ or $a \mid c$.

Assume that $a \nmid b$. This implies that $b \notin \langle a \rangle$ and so $\langle a \rangle \neq \langle a \rangle + \langle b \rangle$

Since by Lemma 24.3 the ideal $\langle a \rangle$ is a maximal ideal, we obtain then that $\langle a \rangle + \langle b \rangle = R$, and so in particular $1 \in \langle a \rangle + \langle b \rangle$. Therefore 1 = ar + bs for some $r, s \in R$, and so c = a(rc) + (bc)s Since $a \mid a(rc)$ and $a \mid (bc)s$ we obtain from here that $a \mid c$. \square

Corollary 24.4

If F is a field then the ring of polynomials F[x] is a UFD.

Proof. Follows from Theorem 24.1 and Theorem 21.13

Corollary 24.4 Applies in particular to the rings $\mathbb{C}[x]$, $\mathbb{R}[x]$, and $\mathbb{Q}[x]$. Next, we will look at the irreducible elements in this rings.

In the ring $\mathbb{C}[x]$ irreducible polynomials can be characterized using the following theorem, the proof of which is omitted:

Theorem 24.5 Fundamental Theorem of Algebra

If $p(x) \in \mathbb{C}[x]$ is a polynomial such that $\deg p(x) > 0$ then there is $a \in \mathbb{C}$ such p(a) = 0.

Corollary 24.6

A polynomial $p(x) \in \mathbb{C}[x]$ is irreducible if and only of deg p(x) = 1.

Proof. If deg p(x) = 0 i.e. $p(x) = a_0$ for some $a_0 \neq 0$, then p(x) is a unit in $\mathbb{C}[x]$.

If $\deg p(x)=1$ and $p(x)=q_1(x)q_2(x)$ for some $q_1(x),q_2(x)\in\mathbb{C}[x]$ then either $\deg q_1(x)=0$ or $\deg q_2(x)=0$. It means that either $q_1(x)$ or $q_2(x)$ is unit. This shows that p(x) is irreducible.

If p(x) > 1 then by Theorem 24.5 there is $a \in \mathbb{C}$ such that p(a) = 0. By Theorem 21.8 we obtain that p(a) = (x - a)q(x) where deg $q(x) \ge 1$, and so p(x) is not irreducible.

Corollary 24.7

If $p(x) \in \mathbb{C}[x]$ is a polynomial and deg $p(x) = n \ge 1$ then

$$p(x) = a_0(x - a_1)(x - a_2) \cdot \ldots \cdot (x - a_n)$$

for some $a_0, a_1, \ldots, a_n \in C$. Moreover, this decomposition is unique up to permutation of factors.

Proof. This follows from Corollary 24.4 and Corollary 24.6

Next, we will look at irreducible polynomials in $\mathbb{R}[x]$.

Definition 24.8

If z = a + bi is a complex number then the *complex conjugate* of z is the complex number $\overline{z} = a - bi$.

Theorem 24.9

If $z_1 = a + bi$, $z_2 = c + di$ are a complex numbers then

- $1) \ \overline{(z_1+z_2)} = \overline{z}_1 + \overline{z}_2$
- 2) $\overline{(z_1 \cdot z_2)} = \overline{z}_1 \cdot \overline{z}_2$

Proof. Exercise.

Corollary 24.10

Let $p(x) \in \mathbb{R}[x]$. If z is a complex number such that p(z) = 0, then $p(\overline{z}) = 0$.

Proof. Let $p(x) = a_0 + a_1 x + \cdots + a_n x^n$. Notice, that since $a_i \in \mathbb{R}$, thus $\overline{a}_i = a_i$. We have:

$$\rho(\overline{z}) = a_0 + a_1 \overline{z} + a_2 \overline{z}^2 + \dots + a_n \overline{z}^n
= \overline{a}_0 + \overline{a}_1 \overline{z} + \overline{a}_2 \overline{z}^2 + \dots + \overline{a}_n \overline{z}^n
= \overline{a}_0 + \overline{a}_1 \overline{z} + \overline{a}_2 \overline{z}^2 + \dots + \overline{a}_n \overline{z}^n
= \overline{a}_0 + a_1 \overline{z} + a_2 \overline{z}^2 + \dots + a_n \overline{z}^n
= \overline{p(z)}$$

Since p(z) = 0 and $\overline{0} = 0$, we obtain $p(\overline{z}) = 0$.

Theorem 24.11

A polynomial $p(x) \in \mathbb{R}[x]$ is irreducible in $\mathbb{R}[x]$ if and only if either deg p(x) = 1 or deg p(x) = 2 and p(x) has no roots in \mathbb{R} .

Note. Recall that if $p(x) = a_0 + a_1x + a_2x^2$ is a polynomial in $\mathbb{R}[x]$, then p(x) has no roots in \mathbb{R} if and only if $a_1^2 - 4a_2a_0 < 0$.

Proof of Theorem 24.11. Let $p(x) \in \mathbb{R}[x]$ and $p(x) \neq 0$.

If deg p(x) = 0, then p(x) is a unit in $\mathbb{R}[x]$.

If $\deg p(x)=1$ and $p(x)=q_1(x)q_2(x)$ for some $q_1(x),q_2(x)\in\mathbb{R}[x]$ then either $\deg q_1(x)=0$ or $\deg q_2(x)=0$, so either $q_1(x)$ or $q_2(x)$ is unit. This means that p(x) is irreducible.

If $\deg p(x)=2$ then p(x) is reducible if and only if $p(x)=q_1(x)q_2(x)$ for some $q_1(x), q_2(x) \in \mathbb{R}[x]$ such that $\deg q_1(x)=\deg q_2(x)=1$. If $q_1(x)=a_0+a_1x$ then for $b=-\frac{a_0}{a_1}$ we have $q_1(b)=0$, and so $p(b)=q_1(b)q_2(b)=0$. This means that p(x) is reducible if and only if it has a root in \mathbb{R} .

Finally, assume that $\deg p(x) \geq 2$. By Theorem 24.5 there is $z \in \mathbb{C}$ such that p(z) = 0. If $z \in \mathbb{R}$ then p(x) = (x - z)q(x) where $\deg q(x) \geq 1$ and (x - z) and q(x) are polynomials in $\mathbb{R}[x]$. This means that p(x) is reducible. If $z \notin \mathbb{R}$ then $\overline{z} \neq z$, and by Corollary 24.10 we have $p(\overline{z}) = 0$. This gives

$$p(x) = (x - z)(x - \overline{z})q(x)$$

for some $q(x) \in \mathbb{C}[x]$, $\deg q(x) \geq 1$. Denote $h(x) = (x-z)(x-\overline{z})$. Notice that if z = a + bi then

$$h(x) = x^2 - 2ax + (a^2 + b^2)$$

so $h(x) \in \mathbb{R}[x]$. This implies that also $q(x) \in \mathbb{R}[x]$, since otherwise some coefficient of p(x) = h(x)q(x) would not be a real number (exercise). Thus we obtain that p(x) is a product of two polynomials in $\mathbb{R}[x]$ of degree greater than 0, so p(x) is reducible. \square

Corollary 24.12

If $p(x) \in \mathbb{R}[x]$ is a polynomial and deg $p(x) \ge 1$ then

$$p(x) = a \cdot q_1(x) \cdot q_2(x) \cdot \ldots \cdot q_m(x)$$

where $a \in \mathbb{R}$ and for each i = 1, ..., m either $q_i(x) = x - a_i$ for some $a_i \in \mathbb{R}$ or $q_i(x) = x^2 + b_i x + c_i$ for some $b_i, c_i \in \mathbb{R}$ such that $b_i^2 - 4c_i < 0$. Moreover, this decomposition is unique up to permutation of factors.

Proof. This follows from Corollary 24.4 and Theorem 24.11

Finally, we will have a look at irreducible polynomials in $\mathbb{Q}[x]$. This will require looking at polynomials in $\mathbb{Z}[x]$.

Definition 24.13

Let $p(x) = a_0 + a_1 x + \ldots + a_n x^n$ be a polynomial in $\mathbb{Z}[x]$. The *content* of p(x) is the number

$$c(p) = \gcd(a_0, a_1, \ldots, a_n)$$

If c(p) = 1 then we say that p(x) is a primitive polynomial.

Note. Notice that any non-zero polynomial $p(x) \in \mathbb{Z}[x]$ can be uniquely written as $p(x) = c(p) \cdot q(x)$ where q(x) is a primitive polynomial.

Lemma 24.14

If $q_1(x)$, $q_2(x) \in \mathbb{Z}[x]$ are primitive polynomials then $q_1(x) \cdot q_2(x)$ is primitive.

Proof. We argue by contradiction. Assume that $q_1(x)$ and $q_2(x)$ are primitive, but $f(x) = q_1(x) \cdot q_2(x)$ is not. Then there is a prime number p such that every coefficient of f(x) is divisible by p. On the other hand, there are some coefficients of $q_1(x)$ and $q_2(x)$ that are not divisible by p. Consider the function

$$\Phi \colon \mathbb{Z}[x] \to \mathbb{Z}_p[x]$$

given by $\Phi(a_0+a_1x+\ldots+a_nx^n)=\overline{a}_0+\overline{a}_1x+\ldots+\overline{a}_nx^n$ where $\overline{a}_i=a_i\mod p$. This function if a ring homomorphism, so $\Phi(f(x))=\Phi(q_1(x))\cdot\Phi(q_2(x))$. However, $\Phi(f(x))=0$ while $\Phi(q_1(x))\neq 0$ and $\Phi(q_2(x))\neq 0$. This means that $\Phi(q_1(x)),\Phi(q_2(x))$ are zero divisors in $\mathbb{Z}_p[x]$. This is impossible, since $\mathbb{Z}_p[x]$ is an integral domain. \square

Theorem 24.15

Let $p(x) \in \mathbb{Z}[x]$. If p(x) is irreducible in $\mathbb{Z}[x]$ then it is irreducible in $\mathbb{Q}[x]$.

Proof. We argue by contradiction. Assume that $p(x) \in \mathbb{Z}[x]$ it irreducible in $\mathbb{Z}[x]$ but reducible in $\mathbb{Q}[x]$. Then $p(x) = q_1(x) \cdot q_2(x)$ for some $q_i(x) \in \mathbb{Q}[x]$ such that deg $q_i(x) > 0$ for i = 1, 2. Let a_1, a_2 be non-zero integers such that $a_1q_1(x), a_2q_2(x) \in \mathbb{Z}[x]$. Let c_i be the content of $a_iq_i(x)$. Then $a_iq_i(x) = c_iq_i'(x)$ where $q_i'(x) \in \mathbb{Z}[x]$ is a primitive polynomial. We obtain:

$$a_1 a_2 \cdot p(x) = a_1 q_1(x) \cdot a_2 q_2(x)$$

= $c_1 c_2 \cdot q'_1(x) \cdot q'_2(x)$

Since p(x) is irreducible in $\mathbb{Z}[x]$, it is primitive and so the content of $a_1a_2 \cdot p(x)$ is a_1a_2 . Also, by Lemma 24.14 $q_1'(x) \cdot q_2'(x)$ is primitive, so the content of $c_1c_2 \cdot q_1'(x) \cdot q_2'(x)$ is c_1c_2 . This shows that $a_1a_2 = c_1c_2$, and so we obtain

$$p(x) = q_1'(x) \cdot q_2'(x)$$

for $q_i'(x) \in \mathbb{Z}[x]$, deg $q_i'(x) > 1$. This contradicts the assumption that p(x) is irreducible in $\mathbb{Z}[x]$.

Theorem 24.16 Eisenstein Irreducibility Criterion

Let $q(x) = a_0 + a_1x + \ldots + a_nx^n$ be a polynomial in $\mathbb{Z}[x]$. Assume that there a prime number p such that p divides a_i for i < n, p does not divide a_n , and p^2 does not divide a_0 . Then q(x) is irreducible in $\mathbb{Q}[x]$.

Proof. Assume first that q(x) is a primitive polynomial. If q(x) is reducible, then by Theorem 24.15 we have $q(x) = q_1(x) \cdot q_2(x)$, where $q_i(x) \in \mathbb{Z}[x]$ and $\deg q_i(x) \geq 1$. Let $q_1 = b_0 + b_1 x + \ldots + b_r x^r$ and $q_1 = c_0 + c_1 x + \ldots + c_s x^s$. Since $a_0 = b_0 c_0$ is divisible by p but not by p^2 , thus p divides either b_0 or c_0 , but not both. We can assume that p divides b_0 . Also, since p does not divide $a_n = b_r c_s$, that means that p does not divide b_r . Let p be the smallest index such that p does not divide p divides p

If q(x) is not primitive, then $q(x) = c(q) \cdot q'(x)$ where $c(q) \in \mathbb{Z}$ is the content of q(x) and $q'(x) \in \mathbb{Z}[x]$ is primitive. Since c(q) is a unit in \mathbb{Q} and q'(x) is irreducible in $\mathbb{Q}[x]$ by the above argument, thus q(x) is irreducible in $\mathbb{Q}[x]$.

Note. Theorem 24.16 indicates that factorization of polynomials into irreductibles is much more difficult in $\mathbb{Q}[x]$ than in $\mathbb{C}[x]$ or $\mathbb{R}[x]$. While in $\mathbb{C}[x]$ irreducible polynomials are of degree 1, and in $\mathbb{R}[x]$ they can be of degree 1 and 2, in $\mathbb{Q}[x]$ there are irreducible polynomials of any degree.

Note. Theorem 24.16 does not identify all irreducible polynomials in $\mathbb{Q}[x]$. For example, one can check that if p is a prime number then the polynomial

$$q(x) = x^{p-1} + x^{p-2} + \dots + x + 1$$

is irreducible in $\mathbb{Q}[x]$, even though it does not satisfy the assumptions of Theorem 24.16.