Definition 20.1

A homomorphism from a ring R to a ring S is a function $f: R \to S$ such that for any $a, b \in R$ we have

- f(a + b) = f(a) + f(b)
- $\bullet \ f(ab) = f(a) \cdot f(b)$

Note. Since a homomorphism of rings $f: R \to S$ is a homomorphism of their additive groups, thus we have f(0) = 0 and f(-a) = -f(a) for any $a \in R$.

On the other hand if R and S are rings with unity, then it need not be true in general that f(1) = 1. Take for example $R = \mathbb{Z}$, $S = \mathbb{Z} \times \mathbb{Z}$, and let $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ be given by f(n) = (n, 0). Then f is a ring homomorphism, but f(1) = (1, 0) which is not the unity in $\mathbb{Z} \times \mathbb{Z}$.

To avoid such situations, usually, when working with rings with unity, it is additionally assumed that homomorphisms preserve the unity, f(1) = 1.

Example. For n > 1 the function $f: \mathbb{Z} \to \mathbb{Z}_n$ given by $f(k) = k \mod n$ is a ring homomorphism.

Example. Let R be a ring and let $a \in R$. The function $f: R[x] \to R$ defined by f(p(x)) = p(a) is a homomorphism of rings.

Example. If R is a ring and $I \triangleright R$ then the function $q: R \to R/I$ given by q(a) = a + I is a homomorphism of rings.

Definition 20.2

A isomorphism of rings is a homomorphism $f: R \to S$ which is a bijection.

If there exists an isomorphism between rings R and S then we say that these rings are *isomorphic* and we write $R \cong S$.

Theorem 20.3

If $f: R \to S$ is an isomorphism of rings then the inverse function $f^{-1}: S \to R$ is also an isomorphism of rings.

Proof. Exercise.

Definition 20.4

Let $f\colon R\to S$ be a homomorphism of rings. The image of f is the set $\mathrm{Im}(f)\subseteq S$ defined by

$$Im(f) = \{ f(r) \mid r \in R \}$$

The *kernel* of f is the set $Ker(f) \subseteq R$ given by

$$Ker(f) = \{ r \in R \mid f(r) = 0 \}$$

Theorem 20.5

Let $f: R \to S$ be homomorphism of rings. Then

- 1) Im(f) is a subring of S
- 2) Ker(f) is an ideal of R.

Proof.

- 1) Exercise.
- 2) One can check that Ker(f) is a subring of R (exercise). Also, if $a \in Ker(f)$ and $r \in R$ then

$$f(ra) = f(r) \cdot f(a) = f(r) \cdot 0 = 0$$

so $ra \in Ker(f)$. Similarly, $ar \in Ker(f)$. This show that $Ker(f) \triangleleft R$.

Theorem 20.6 (First Isomorphism Theorem for Rings)

Let $f: R \to S$ be a ring which is onto. Then $S \cong R/\mathrm{Ker}(f)$.

Proof. Define $g: R/\mathrm{Ker}(f) \to S$ by $g(a + \mathrm{Ker}(f)) = f(a)$. One can check that this is a well defined function, which gives an isomorphism of rings.

Example. Recall that for n > 1 we have an onto homomorphism $f: \mathbb{Z} \to \mathbb{Z}_n$, $f(k) = k \mod n$. Notice that

$$Ker(f) = \{nk \mid k \in \mathbb{Z}\} = n\mathbb{Z}$$

This gives $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$.

Example. Take the homomorphism $f: R[x] \to R$ defined by f(p(x)) = p(0). This homomorphism of onto, since if $a \in R$ then r = f(p(x)) for the polynomial p(x) = a. We have

$$Ker(f) = \{ p(x) \mid p(x) = 0 \}$$

= \{ a_1 x + \dots + a_n x^n \ | a_i \in R, n \ge 0 \}
= xR[x]

This shows that $R[x]/xR[x] \cong R$.

Theorem 20.7

If R is a ring and $I \triangleleft R$ then there exists a ring homomorphism $f: R \rightarrow S$ such that Ker(f) = I.

Proof. Take S = R/I and $f: R \to R/I$ defined by f(a) = a + I.