Definition 13.1

Let G be a group and $H \subseteq G$ a subgroup. For $a \in G$ the *left coset of* H *in* G *containing* a is the subset of G given by

$$aH = \{ah \mid h \in H\}$$

Similarly, the right coset of H in G containing a is the subset

$$Ha = \{ha \mid h \in H\}$$

Example. Consider the group D_4 :

0	1	R_{90}	R_{180}	R_{270}	Н	V	D	D'
1	1	R_{90}	R_{180}	R_{270}	Н	V	D	D'
R_{90}	R_{90}	R_{180}	R_{270}	1	D'	D	Н	V
R_{180}	R_{180}	R_{270}	1	R_{90}	V	Н	D'	D
R_{270}	R_{270}	1	R_{90}	R_{180}	D	D'	V	Н
Н	Н	D	V	D'	1	R_{180}	R_{90}	R_{270}
V	V	D'	Н	D	R_{180}	1	R_{270}	R_{90}
D	D	Н	D'	V	R_{270}	R_{90}	1	R_{180}
D'	D'	V	D	Н	R_{90}	R_{270}	R_{180}	1

Take the subgroup $K = \{I, H\}$ of D_4 . Here are some left and right cosets of K in D_4 :

$$R_{90}K = \{R_{90}, D'\}$$
 $KR_{90} = \{R_{90}, D\}$
 $D'K = \{D', R_{90}\}$ $KD' = \{D', R_{270}\}$
 $DK = \{D, R_{270}\}$ $KD = \{D, R_{90}\}$

Notice that:

- Cosets defined by different elements may be the same. E.g. $R_{90}K = D'K$.
- Left coset of a given element may be different that the right coset. For example, $R_{90}K \neq KR_{90}$.

Theorem 13.2

Let G be a group, $H \subseteq G$ a subgroup, and let $a, b \in G$. Then:

- 1) $a \in aH$.
- 2) either aH = bH or $aH \cap bH = \emptyset$.
- 3) aH = bH if and only if $a^{-1}b \in H$.
- 4) |aH| = |H|, where |aH| denotes the number of elements in aH.

Analogous properties hold for right cosets.

Proof.

- 1) Since $e \in H$ thus $a = ae \in aH$.
- 2) Assume that $aH \cap bH \neq \emptyset$ and let $g \in aH \cap bH$. Then $ah_1 = g = bh_2$ Then for $h \in H$ we have

$$ah = ah_1(h_1^{-1}h) = bh_2(h_1^{-1}h) \in bH$$

This shows that $aH \subseteq bH$. By a similar argument $bH \subseteq aH$, so aH = bH.

- 3) If aH = bH then b = ah for some $h \in H$, so $a^{-1}b = h \in H$. Conversely, if $a^{-1}b = h \in H$ then $b \in aH \cap bH$. By part 2) this gives aH = bH.
- **4)** It is enough to notice that the function $f: H \to aH$, f(h) = ah is a bijection. \Box

Definition 13.3

For a group G and a subgroup $H \subseteq G$ by G/H we denote the set of left cosets of H in G and by $H \setminus G$ we denote the set of right cosets.

Example. Cosets of $K = \{I, H\}$ in D_4 :

Ι	Н
R_{90}	D'
R ₁₈₀	V
R_{270}	D

 $H \setminus G$ right cosets

Theorem 13.4

If G is a group and $H \subseteq G$ is a subgroup, then $|G/H| = |H \setminus G|$.

Proof. The function $f: G/H \to H \setminus G$ given by $f(aH) = Ha^{-1}$ is a bijection.

Definition 13.5

If G is a group and $H \subseteq G$ is a subgroup then the *index* of H, denoted [G : H], is the number of left cosets of H in G (or, equivalently, the number of right cosets):

$$[G:H] = |G/H| = |H \backslash G|$$

Example. If $K = \{I, H\} \subseteq D_4$ then $[D_4 : K] = 4$.

Theorem 13.6 (Lagrange Theorem)

If G is a finite group and $H \subseteq G$ is a subgroup then

$$|G| = [G:H] \cdot |H|$$

Proof. By Theorem 13.2 each element of G belongs to exactly one left coset of H. Thus, if a_1H , a_2H ,..., a_nH are all distinct cosets, then

$$|G| = |a_1H| + |a_2H| + \ldots + |a_nH|$$

Moreover, since each coset consists of |H| elements and there are [G:H] cosets, we obtain that $|G| = [G:H] \cdot |H|$.

Corollary 13.7

If G is a finite group and $H \subseteq G$ is a subgroup then the order of H divides the order of G.

Corollary 13.8

If G is a finite group and $a \in G$ then the order |a| of a divides the order of G.

Proof. Recall that by Theorem 7.8 we have $|a| = |\langle a \rangle|$ where $\langle a \rangle$ is the subgroup of G generated by a. Also, by Corollary 13.7, $|\langle a \rangle|$ divides |G|.

Note. It is not true that if G is a group and k divides |G| then G contains an element of order k. Take for example the symmetric group S_4 . By looking at possible disjoint cycle decompositions of elements of S_4 , we can see that every element of S_4 has order 1,2,3 or 4. This means that S_4 does not contain any element of order 6, even though 6 divides the order of S_4 .

Note. It is also not true that if k divides the order of a group G, then G contains a subgroup H of order k. We will see an example of that later.

Example. Let G be a group of order p where p is a prime number. Then every element of G is of order either 1 (i.e. it is the identity element) or p. Thus if $a \in G$ and $a \neq e$ then |a| = |G|. This means that G is a cyclic group generated by a, and so $G \cong \mathbb{Z}_p$.

Example. We will show if G is a group of order 4, then G is isomorphic either to \mathbb{Z}_4 or to $\mathbb{Z}_2 \oplus \mathbb{Z}_2$. By Corollary 13.8, if $a \in G$ then |a| = 1 (which means that a = e), |a| = 2, or |a| = 4. If G contrains an element of order 4, then it is cyclic, and so $G \cong \mathbb{Z}_4$. Otherwise, G contains the trivial element e and three elements, (which we will denote a, b, c) of order 2. Notice that ab = ba = c (since ab = b would give a = e, ab = a would give b = e, and ab = e = aa would imply that b = a). Similarly, we obtain that ac = ca = b and bc = bc = a. This shows that the function $f: G \to \mathbb{Z}_2 \oplus \mathbb{Z}_2$, given by f(a) = (1,0), f(b) = (0,1) and f(c) = (1,1) is an isomorphism of groups.